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The transport of charged species in collisional currentless plasmas is traditionally thought of as a 

diffusion-like process. In this paper, it is demonstrated that, in contrast to two-component plasma, 

containing electrons and positive ions, the transport of additional ions in multi-species plasmas is 

not governed by diffusion, rather described by nonlinear convection. As a particular example, 

plasmas with the presence of negative ions have been studied. The velocity of a small perturbation 

of negative ions was found analytically and validated by numerical simulation. As a result of 

nonlinear convection, initially smooth ion density profiles break and form strongly inhomogeneous 

shock-like fronts. These fronts are different from collisionless shocks and shocks in fully ionized 

plasma. The structure of the fronts has been found analytically and numerically.  
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I. INTRODUCTION 

 

Discharges in electronegative gases (sixth and seventh group of periodic table) form a large 

number of negative ions. One of the most important examples of electronegative plasmas is 

atmospheric electricity. Another example is discharges in halogen gases, typically used in material 

processing for semiconductor manufacturing 1. In some applications negative ion beams are 

preferable than positive ion beams and discharges in electronegative gases are used as a source of 

negative ions2. The ionospheric D-layer 3 is also one of the examples of atmospheric plasma with 

large percentage of negative ions. Recently large interest was devoted to dusty plasmas, dust 

particles are negatively charge and can be viewed as large negative ion4.  

We focus on general properties of partially ionized nonstationary collisional plasma transport 

where the ion mean free path is smaller than the plasma chamber dimensions. Generally transport of 

charged species in muti-component plasmas is thought to be some sort of ambipolar diffusion 5. In 

this paper, it was demonstrated that, in contrast to two-component plasma, containing electrons and 

positive ions, the transport of additional ions in multi-species plasmas is not governed by diffusion, 

rather described by nonlinear convection. Ion density discontinuities may form as a result of 

nonlinear convection and ion density profile break. In this paper we generalize results received in 

Ref. 6 and 7 for a case of current carrying plasmas. Though the front formation for currentless 

plasma was already proposed in Ref. 8, this paper lacked rigorous analysis of small signal 

propagation and good numerical examples, thus, the results were not disseminated in plasma physics 

community.  
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The paper is organized in six sections: section II describes the main set of equations; section 

III considers results of a linear theory of dynamics of small perturbations of negative ions in 

inhomogeneous partially ionized plasma; section IV generalizes the results of linear theory on the 

nonlinear case and describes formation of negative ion density discontinuities- fronts; section V is 

devoted to the front structure; and section VI contains the conclusion and outlook.  

 

II. DESCRIPTION OF THE MODEL 

 A) System of equations 

  

We assume that the ion mean free path is small compared to the characteristic discharge 

dimension and examine one-dimensional species transport in a parallel plate geometry. The charged 

species fluxes in collisional partially ionized plasma are described by a drift-diffusion 

approximation 

 eEn
x

n
D kk

k
kk µ−

∂
∂

−=Γ ,  

where Dk  and �µ  are the k-species diffusion coefficient and mobility, respectively, linked by the 

Einstein relation ���� ��� µ= . Tk is the k-species temperature. We shall address only currentless 

plasma with zero net current 0=−−= ���� 	
� ΓΓΓ . Taking into consideration only one positive 

and one negative ion species with densities (np , nn , respectively), the self-consistent electrostatic 

field (E) is given 5 by  
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Subscripts p, n, and e correspond to positive ions, negative ions, and electrons, respectively, and 

x∂
∂=∇ . Below we shall consider only the case when the electron density is such that 

�
�� �
		
µµµ >>  and its gradient is not too small ( ppnnee nDnDnD ∇∇>>∇ , ); and electrons are 

described by Boltzmann equilibrium:  

)ln ee n( /e-TE ∇= ,          (1b) 

which gives an explicit relation between electric field and the logarithmic electron density gradient.  

Even though electron drift flux is larger than ion drift fluxes, the electronegativity � ����
 can be 

large, since the ratio of mobilities is huge, is of the order of few hundreds. Eq.(1b) for the electric 

field, along with the continuity equations for negative ion (Eqs.2a) and positive ion number density 

(Eqs.2b), and the electroneutrality constraint [Debye radius is assumed small, Eqs.(3) ], yield a 

complete system of equations that describes the spatiotemporal evolution of charged species 

densities, fluxes, and electric field 
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npe nnn −= .  (3) 

In the above equations, iiβ  is the ion-ion recombination rate coefficient,  νioniz , νatt, and νd are the 

ionization, attachment, and detachment frequencies, respectively.  

Being focused on general properties of nonlinear transport, we neglected source terms and 

assumed ion mobilities as constant. 
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The system (1-3) for positive and negative ion densities can be rewritten in terms of negative 

ion density and electron density.  
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where nu  is the negative ion drift velocity, effD  is the effective electron diffusion coefficient. The 

new system of Eqs.(4, 5) is more transparent than the initial system (2), since (4b) has only diffusive 

term, in contrast to the both, diffusion and drift terms of Eqs.(2a,b). 

 

B) Numerical method 

 

 The system of Eqs. (1b, 2, 3) has been solved with finite difference method. The flux-

corrected transport technique (FCT) was employed for Eq. (2). The second order FCT method 6 was 

necessary to use for suppressing numerical diffusion, arising from the convection term.  

In the FCT technique the first step is to calculate the initial guess (predictor) at next (n+1) 

step in time (τ) at j-th point in space, chosen on uniform mesh with grid space (h).  
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where 2/)( 1
n
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),( jn
n
j xnnn τ≡ , )( jnj xuu ≡ , ν is numerical positive diffusion coefficient. The second step is to 

calculate corrector fluxes  

[ ]{ })(,),(min,0max)( 2/12/32/12/12/12/12/1 ++++−++ ∆∆∆∆∆∆= jjjjjj
c
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where **
12/1 jjj nnn −=∆ ++ , and  coefficient µ determines anti-diffusion. The third step calculates the 

value of 1+n
jn   c

j
c
jj

n
j ffnn 2/12/1

*1
−+

+ +−= .  

Ref. 9 recommends the following values for single convection equation 3/6/1 2C+=ν , 

6/6/1 2C−=µ , where C=uτ/h. However, we found that the optimal choice of the values of µ,ν for 

system of Eq. (1b, 2, 3) was 0.005, for the best illumination of numerical diffusion and dispersion. 

 

III. SMALL PERTURBATION DYNAMIC  

 

 We first study the small signal propagation in unbounded uniform plasma. In gas discharges, 

ion temperature is a factor of hundred less compared to electron temperature; as a result, ion 

diffusion may be neglected compared with drift.  

The ion and electron density variations αδn  are taken to be of the form )ikxtiexp(n +− ωδ α . 

Substitution of charged species variations into (4) results in  

02 =−− ���� �� �
����

δµωδ , (6a) 

02 =+−
		 � �	 �����

δωδ ,    (6b) 

npe nnn δδδ −= ,                (6c) 
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There are two modes. The first mode, in which the electron density remains uniform 

( 0=��δ ) np nn δδ = , does not evolve in time (its slow dissipation is described by the ion diffusion 

omitted here), and its frequency equals to zero 

01 =ω . (7a) 

The second mode evolves with frequency:  

2
2 kiDeff−=ω . (7b) 

This mode corresponds to monotonic decay of a density perturbation with effective diffusion 

coefficient Deff . Short wavelength modes (large k) decay more rapidly.  

 The evolution scenario in this case is close to the situation in the pure two component plasma 

with diffusion coefficient Deff , instead of the ordinary ambipolar coefficient in two-component 

plasma 
	�� ��

µ≡ . In the limit of the two-component plasma, negative ion density equals to zero 

and the effective diffusion coefficient (5b) coincides with ambipolar diffusion coefficient. At large 

electronegativity, (nn/ne >> 1) the effective diffusion coefficient (5b) is much greater than the 

ambipolar diffusion - the presence of the negative ions can strongly enhance the value of Deff. This 

property strongly influences the evolution of the electronegative plasma profiles, as will be 

discussed below. 

 The signal propagation is different, if the inhomogeneity of the background plasma is taken 

into account, in particular the electron density gradient: 0/1/ ≠≡∂ eee Lxnn ∂ . The derivations are 

easier to perform in the limit of small scale perturbations kLe>>1. Linearization of system (4) 

results in a quadratic equation for frequency:  

02 =−+ ��
ωω ,  (8a) 
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small terms of the order of (1/kLe ) were neglected in (8). From the quadratic equation (8a) for 

frequency it follows that its roots should satisfy 
�*+

−=+ 21 ωω  �=21ωω . As we shall see ω1<<ω2; 

and then immediately b−≅2ω  and bc /1 −≅ω , in the leading terms of kLe: 

kueff=1ω , 
x

nT

nn
u ee
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pn
eff ∂
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µµ

µµ
. (9a) 

2
2 kiDeff−=ω . (9b) 

The fast diffusive mode (7b) and (9b) ω=ω2, remains unchanged. On the other hand, the static mode 

(7a) ω=ω1 converts into a propagating one (9a). In this mode, the signal moves with the velocity 

)/( ppnnepneff nnnuu µµµ +=  factor )/( ppnnep nnn µµµ +  different from the negative ion drift 

velocity un.  

The theoretical predictions were verified by numerical modeling. The propagation of the 

small perturbation is shown in Fig.1 for three different values of electronegativities ( enn / ). When 

electronegativity is small ( 1<<,-.- ), / 0 1 1  coincides with the drift velocity of negative ions 

neff uu ≈ . In the opposite case, when electronegativity is large ( 1>>,-.- ), 2 3 4 4  is much lower 

than the drift velocity u, as can be seen in Fig.1. Theoretical calculations for signal speed exactly 

coincide with results of numerical simulations as demonstrated in Table 1. 
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IV. NONLINEAR EVOLUTION OF NEGATIVE ION DENSITY PROFILES AND 

FORMATION OF NEGATIVE ION FRONTS.  

 

As discussed above the speed of negative ion density perturbation depends significantly on 

negative ion density. As a result different parts of the profile of large perturbations of negative ion 

density move with different velocity, and nonlinear evolution results in the profile modification.  For 

analysis of the nonlinear evolution of the negative ion density profile, it is convenient to rederive the 

small signal propagation velocity (9a) in another way. In narrow perturbations of negative ion 

density, (in the limit kLe>>1), the electron density perturbations evolve much faster (ω2>>ω1 ), 

and electron density adiabatically adjusts itself to ion density. Consequently, electron flux varies 

much more slowly than ion flux, and can be assumed to be nearly constant. Using electron flux as 

slowly varying variable it is convenient to substitute electron gradient xne ∂/∂  by electron flux 

xnD eeffe ∂∂−=Γ / ,  Eq.(4a) can be rewritten in the form: 

( ) 0=+ nxt

n Γ
∂
∂

∂
∂

,  (10a) 

pn

n

pn

n
en µµ

µΓΓ
+

−= ,  (10b) 

small diffusion term was neglected. Making use of slow variation of electron flux, Eq.(10a) reads 

0)( =+ n
x

nu
t

n
eff ∂

∂
∂
∂

,   (10c) 

n
u n

eff ∂
Γ∂

=   

where the small signal propagation velocity effu  coincides with the previous estimate (9a), but still 

remains valid for nonlinear perturbations, too. The evolution of nonlinear negative ion density 
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perturbation is shown in Fig.2. The general theory of nonlinear convection shows10, that each point 

of initial profile n0(x) moves with it’s own velocity )(nueff , and the solution of (10c) is 

))(( 00 tnuxnn eff−=  . 

According to the theoretical predictions, in Fig.2 the regions of small negative ion density 

move faster than regions of large negative ion density. As a result the front of the profile spreads 

out, and steepening of the back profile leads to profile break and formation of ion density 

discontinuity-  ion density fronts (Fig.2). Note that negative ion density fronts are different from 

gasdynamic shocks, though both originated from nonlinear convection.

 

V.  STRUCTURE OF NEGATIVE ION FRONTS 

 

The analysis of the front structure can be performed similar to the studies of gasdynamic 

shocks as described in Ref. 10. In the frame moving with the front, electron density and flux is 

approximately conserved: 

e
e

e

np
ee Vn

dx

dn

n

np
T −

+
−=

)(~ µµ
Γ ,        (11) 

where V is shock velocity, and tilde denote values  in the front frame. From the conservation of 

electron flux and density, it follows, that electron density gradients to the right (+) and to the left (-) 

of the shock have to satisfy  

−+

+=+
dx

dn
np

dx

dn
np e

np
e

np )()( µµµµ .      (12) 

Similarly negative ion flux is conserved  

nnn Vn−Γ=Γ~ ,          (13a) 
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and 

 −+

−+

−

Γ−Γ
=

nn

nn

nn
V          (14) 

Substituting expression for nΓ  (10b) in Eq.(14) results in 
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 Finally, after substituting the expression for electron flux we have 
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dx
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nep

e
enp
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 (15b) 

Table 2 demonstrates good agreement of theoretical predictions for the front speed Eq.(15b) and 

numerically obtained values for the conditions of Fig.2. 

In Fig. 3 the electron and negative ion fluxes are depicted.  It is seen that electron flux is 

nearly conserved, whereas negative ion flux changes rapidly in the front, see Fig.3a. Convective 

flux nΓ  nearly coincides with Vn  showing that the whole profile moves with the speed V, see 

Fig.3b. The difference between two fluxes nnn Vn−Γ=Γ~  is small, and is associated with the ion 

diffusion, see Fig.3c. 

Inside the front the total flux is conserved, and ion diffusion is balanced by convective flux 

in the frame moving with the front . Hence, Eq.(13a) takes the form: 

x

n
TVn n

innnn ∂
∂

−−Γ=Γ µ~
.       (13b) 
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Substituting the expression for convective flux Eq. (10b) and front velocity (15b) we find that at the 

periphery where diffusive flux tends to zero  

( ) ( ) +−

−+

++++
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−=Γ

nnenpnnenp

ennnpn
n

nnnnnn

nn

µµµµ

µµµ
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and diffusion flux reads: 

nnpp
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n
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+
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−+ )()(
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Integration of (16) yields front width: 
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where ε  is an arbitrary small number.  Integration of (17b) yields  
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In the case of equal ion mobilities, and choosing 1.0=ε  and −+ >> nn  
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For small electronegativity +>> nne    

+≈
n

2.2
n

n

T

T
LL e

e

i
efront ,  

 front sheath is reciprocal of the change in density in the front ( +n ); small density discontinuities 

spreads wider similarly to the Burgers’  equation 10, (where flux is quadratic function of densty).  

In the opposite case of large electronegativity +<< nne    

ee

i
efront n

n

T

T
LL

+

≈ n4.4    

sheath width is proportional to the change in density in the front, in contrast to the Burgers’  

equation.  

In the range 1/2/1 << + enn  front width varies insignificantly and  

e

i
efront T

T
LL 13≈  

In other words, the width of the front depends upon the ratio of negative ion density and 

convective flux; for small electronegativity +>> nne  this ratio increases, and, in the opposite case 

of large electronegativity +<< nne ,  the ratio decreases with increase of negative ion density -  front 

width changes respectively. 

Comparison of theoretical estimates with numerical simulations is presented in Fig.4 and 

Table 3. In Fig.4b one can see that the front width increases proportionally to ion temperature.  

The examples of front formation in practical discharges are collected in review11.  

 

VI. Conclusions 

 



 14

In the general case of multi-species plasmas the field-driven fluxes of the charged particles 

are of a complex nature. Assuming a two-component plasma (positive ions and electrons with 

densities np=ne), and Boltzmann equilibrium for electrons,  the drift flux of positive ions is reduced 

to an effective linear (ambipolar) diffusion flux. If plasma consists of two or more sorts of ions, the 

flux of any given species of the charged particles depends, in general, not only on its own density 

gradient, but also on the density gradients of all the other species. For example, the presence of 

negative ions substantially influences the charged species fluxes. In a plasma containing negative 

ions (with density n), the drift flux of negative ions is a nonlinear function of densities, 

xnnTEn enennn ∂∂=− /lnµµ , and described by convection, with a velocity that depends nonlinearly 

on electron densities, and via equation for evolution of electron densities depends nonlinearly on the 

negative ion density also. We show that in inhomogeneous EN plasmas the small-localized 

perturbation of positive and negative ion density moves with velocity  

x

n
T

nn
u e

e
ppnn

pn
eff ∂

∂
+

=
µµ

µµ
.  

Since ueff  is a function of negative ion density, the nonlinear evolution of perturbations 

results in formations of negative ion density discontinuities - negative ion density fronts, analogous 

to shocks, which are widely known in gasdynamics 10, and collisional multi-species plasmas, 

carrying dc current, see Ref. 6, 7.  Ion density discontinuities forms as a result of nonlinear 

convection and ion density profile break. In this paper we have generalized the results received in 

Ref. 6 for a case of currentless plasmas. The width of the negative ion front is found to be 

proportional to ratio of ion and electron temperatures times electron inhomogeneity scale.  

 In summary, plasma with negative ions tends to stratify into regions with presence of negative 

ions and electro-positive plasmas (without negative ions) the boundary between two regions-front- 
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is narrow and forms as a result of nonlinear convection and negative ion density profile breaking. 

The fronts is general phenomenon for collisional multi-species plasma and has to be accounted in 

study of discharge in electronegative gases 11.   
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Figure captions:  

 

Table 1 

Speed of the signal propagation ( effu210− ) for the conditions of Fig.1, num. denotes the 

results of numerical simulations, theory – calculations by Eq.9a 

 

Table 2 

 

The comparison of theoretical predictions for the front speed Eq.15b and numerical 

result, performed for the conditions of Fig.2  

 

Table 3 

 

The comparison of theoretical predictions for the front width Eq.17d and numerical 

result, performed for the conditions of Fig.4b. num. corresponds to the width calculated 

as difference between positions of ion density equal to 0.9 and 0.1 of maximum 

(x(n=0.9nmax)-x(n=0.1nmax)). 

 

Figure 1 

Propagation of small signal for the same unperturbed electron density (ne =3.7-0.3 x) and 

different densities of unperturbed plasma negative ions. (a) enn 0.2≈  (n =6-0.3 x), (b) 

enn ≈  (n =4-0.3 x), (c) 0=n . All variables are dimensionless, normalized on some 



reference values, density 0/ nn , coordinate x/L, time )/(2
enTtL µ . Ion diffusion was 

neglected, and ion nobilities were taken to be the same pn µµ = . 

 

Figure 2 

Propagation of large perturbation of negative ion density for the conditions of Fig.1, but 

Ti=0.001and ne =6.2-3.6x, initially at t=0 




 −−=
2

2)93.0(
exp

a

x

a

N
n

π
, where 

a=0.0144, and total number of negative ions N=0.476, and negative ion density profiles 

are plotted 6 times every 0.25 units of dimensionless time. 

 

Figure 3 depicts the front structure. The same conditions as in Fig.2 at t=1. a) Negative 

ion and electron fluxes, electron and negative ion densities and gradient of electron 

density, b) convective flux nΓ  and Vn  where V is front velocity from Eq. 15), c) minus 

convective flux in the front frame −−+−− |)()( VnVn nn ΓΓ , and diffusive flux 

x

n
Tin ∂

∂− µ .  

Figure 4. Propagation of the ion density discontinuity. Ion mobilities are constant. The  

initial profiles of all species are linear  n(x)= 0.4-0.23x , ne(x)= 0.6-0.24x , at the right 

boundary positive ion density was fixed p(0)=1, at the left negative ion was constrained 

initially n(1)=0.17; at time equal zero boundary condition at left side was change to 

n(1)=0.05 causing ion density wave to propagate to the right. Fig 4a) depicts time 

evolution of perturbation for Ti=0.001; Fig. 4b) shows perturbations of negative ion 



density (n- (0.23-0.18x) ) for three different ion temperatures, Ti= 0.002; 0.006, 0.01. The 

width of the back front of signal increases proportionally with Ti.   



Table 1. a) b) and c). Speed of the signal propagation ( effu210− ) for the conditions of Fig.1a) b) and c), 

num. denotes the results of numerical simulations, theory – calculations by Eq.9a.  

 
           a)                             b) 
time  ueff , num. ueff, theory  ueff, num. ueff, theory 

0 1.999 1.991  2.701 2.713 

10 1.975 1.978  2.642 2.631 

20 1.953 1.950  2.587 2.581 

30 1.931 1.933  2.536 2.533 

  
     c) 

time ueff, num.  ueff, theory 

0 8.058 8.012 

2 7.933 7.964 

4 7.814 7.801 

6 7.703 7.701 

8 7.596 7.586 

10 7.496 7.501 
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1 Table 1 Kaganovich et.al. 



Table 2. The comparison of theoretical predictions for the front speed Eq.15b and numerical result, 

performed for the conditions of Fig.2 

time  V,num. V, theory 

0.00 0.40 0.40 

0.25 0.69 0.68 

0.50 0.68 0.67 

0.75 0.63 0.62 

1.00 0.58 0.58 

1.25 0.54 0.54 
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2 Table 2 Kaganovich et.al. 



Table 3.The comparison of theoretical predictions for the front width (17d) and numerical result, 

performed for the conditions of Fig.4b. num. corresponds to the width calculated as difference between 

positions of negative ion density equal to 0.9 and 0.1 of the maximum of density perturbations. 

 
Ti/Te Lfront,  

num. 

Lfront, 

  theory 

0.002 0.058 0.050 

0.006 0.14 0.14 

0.01 0.22 0.24 
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